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ABSTRACT

The mathematical basis for the Random Decrement technique of
vibration signature analysis is established. The general relationship
between the autocorrelation function of a random process and the
Randomdec signature is derived. For the particular case of a linear
time invariant system excited by a zero-mean, stationary, Gaussian random
process, a Randomdec signature of the output is shown to be proportional
+o the autocorrelation of the output.

Example Randomdec signatures are computed from acceleration response

time histories from an offshore platform.
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A MATHEMATICAL BASIS FOR THE RANDOM DECREMENT
VIBRATION SIGNATURE ANALYSIS TECHNIQUE

INTRODUCTION

The Random Decrement Technique of vibration signature analysis was
empirically developed in the late 1960's by Henry Cole [,z,3,4].

Since that time it has achieved
rather widespread use, especially in the aerospace industry, for the
analysis of experimentally generated vibration data [3,4,5,6,7]. The method
is frequently used for the determination of modal damping ratios and the
detection of mechanical failure. The method also forms the basis of another
more general vibration analysis technique known as "Ibrahim Time Domain
Modal Vibration Testing Technique" [8].

The Randomdec method has achieved rather widespread use because the
instrumentation is rather simple, the data processing can be done generally
real time, and most of all, because it appears to work. The missing element
in the literature and in the day to day interpretation of the results of
the technique is a sound mathematical formulation which shows exactly what
a randomdec signature is. Without such a theoretical basis the accuracy of,
for example, estimates of modal damping ratios of a multiple degree of
freedom system cannot be determined.

This paper presents the mathematical basis for the Randomdec technique.

The general relationship between the autocorrelation function of a random



process and the randomdec signature is derived. A completely general
result is obtained. In the particular case of a linear, time invariant
system excited by a zero mean, stationary, Gaussian random process a Random-

dec signature is shown to reduce to

Rx(T)
O (T = myaor o (1)
where X(t) is the response of the linear system

X0 is the trigger level for the acquisition of sample time
histories X(t).
Rx(r) is the autocorrelation function of the random process X(t)

RX(O) = RX(T=0)

This result reveals a small but important difference from the commonly
believed interpretation of the Randomdec signature. It is usually accepted
that if a linear system is excited by a stationary, Gaussian random process
then the Randomdec signature is the same as the free vibration response of
that Tinear system to the set of specified initial conditions. The result
of Equation (1) shows that for the case of a specified initial amplitude,

the signature is proportional to the autocorrelation function. The
autocorrelation function is not in general proportional to the free vibra-
tion decay of the linear system. It happens that for the case of a single
degree of freedom oscillator excited by a white noise, stationary, Gaussian
process, the autocorrelation function is exactly proportional to the free

vibration decay from a specified initial displacement. This special case



is often used to argue on intuitive grounds that the Randomdec signatures
resulting from non-white Gaussian stationary excitations also represent
free decay curves. The error in previous analyses which leads to this
conclusion is identified. Fortunately, most applications of the Randomdec
method have been circumstances in which the excitation was sufficiently
broadband that the free vibration decay interpretation did not lead to

substantial errors.

The Definition and Intuitive Theory of the Randomdec Method

A Randomdec signature is simply the trace formed by a waveform averaging
a number of specially selected segments from an observed time history. Each
of the segments share the common attribute of known initial conditions.
Since one may specify an initial value and/or an initial slope for the selected
segments, an infinite variety of possibilities exists for the resultant
signature. The most popular choice is to only specify the initial amplitude
for the segments. For a mechanical system the physical interpretation of
such initial conditions is a specification of the initial displacement but
not the velocity of the system at the time each segment is selected.

An equivalent definition of the Randomdec signature can be obtained
using the concept of ensemble averages. In order to do this one must first
assume that the random process is ergodic. Accordingly averages computed
from a single time history are equivalent to averages computed across the
ensemble of all potential time histories of the process. Under this
assumption, the definition of the Randomdec signature is simply the conditional

expected value of the random process. In conditioning the expected value,



members of the ensemble are excluded from the computation unless they
possess the specified values for the initial conditions. These concepts
form the basis for the analytical treatment of the Randomdec signature through-
out the remainder of the paper.

The intuitive theory of Randomdec is most easily demonstrated by the
example of a single degree of freedom mechanical oscillator excited by a
zero-mean, stationary, Gaussian random force. The equation of motion of this

system is given by

Mi + RX + KX = F(t) (2)-

The response X(t) is also a zero-mean, stationary, Gaussian process.

Consider a randomly selected segment of the response X(t). At the beginning of
the segment, for which t is arbitrarily set to zero, the segment has particular
initial values for the amplitude and slope; X(0) = a and
i(o) - b. If at time t=0 the excitation had been removed, then the re-
sponse X(t) would have been simply the transient decay from the initial
conditions a and b.

If on the other hand the excitation had continued, the resulting response would
have been the linear superposition of the transient decay due to initial
conditions plus the convolution integral of the impulse response function

for the system and the excitation as shown.

—Ewot (-UO b “Ew t
X(t) = ae [cos wt + —— sin m]t] + —e 0 sin wmt o+
1 1
t
+ S h{t - 1) F(1)dt (3)

0



where W, = M Wy = wo\H-gz .

As previously stated, the Randomdec signature is simply the average of a
jarge number of segments of the response Xi(t) given that each must start
with the same initial conditions, a and b. Using an ensemble average, the

Randomdec signature is the conditioned expected value of Equation (3).

-Ew, t w & t
E[X(t)]a,b] = ae © [cos wt + 69— sin w]t] + b e{mo sin wt +
1
t
+ f h{t-1)E[F(T)]a.b] dr (4)
0

where the expression E[ |a,b] should be interpreted as the expected
value of the specified random variable, given that a and b are the initial
conditions on the response Xi(t)'

The intuitive theory of Randomdec and also the solution proposed by
Caughey [ 9] in a paper on earthquake response published in 1961 argue that
because the input was specified as a zero mean, stationary, random process
then the expected value of the forcing function in the convolution inte-
gral of Equation (4)must be zero, thereby proving that the expected value
of X{t) given the initial conditions a and b is simply the transient decay
of the system from those initial conditions. This is not true. The re-
quirement of known values of the output at t = 0 has biased the expected
value of the excitation in such a way that it is no longer necessarily
zero, just because it is in general a zero mean input. This is demon-
strated below for the general case of a linear, time invariant system ex-
cited by a random process, F(t).

The cross correlation of the input at t2 with an output at t1 is

given by:



RXF(tl’tZ) = S J X.IF2 P(X?Fz) dxldxz (5)
X, F
1 2
where X, and F, denote the processes of X(tl) and F(tz) and P(X]Fz) is
+
the joint probability density function of X1 and F2'

The joint pdf can be written in terms of a conditional pdf and a

first order pdf as follows:
P(X,Fy) = P(X)) P(Fo[ %)) (6)
and Equation (5) may be rewritten as
Ryeltysty) = L XPOG) s Fp PURpIXy) dFpdXy (7)
4 F2
This integral over F, is the expected value of F(tz) given X(t1),

dX(t1)
-

where, to simplify the example, it was assumed that was not

specified. In most cases the cross-correlation is not zero, which can
only mean that the expected value of F(tz) given x(t1) cannot be, in
general, zero.

The intention of this analysis was to establish that the intuitive
arguments behind Randomdec and for that matter the earlier analysis of
reference [ 9] are not generally correct. The derivation of the Random-

dec signature is presented in the next section.

The General Relationship Between the Autocorrelation Function and the

Randomdec Signature

The Randomdec signature is computed by averaging an ensemble of time

‘histories of a random process. The only common feature of the histories



js that in each case, the sample has started with the same initial con-
ditions. To simplify the analysis, consider the case that only an initial
amplitude but not slope is specified. In probabilistic terms the task is
to find the expected value of a random process X{t), evaluated at t = t2’
given that at a previous time tl’ the random process had crossed the
trigger level, Xo. A mathematical expression of this definition of the

Randomdec signature is:

Dy (bt = EX(RIX(E) = %] (8)
where the expression on the right is the expected value of X(tz) given
X(t]) = Xo’ and the expression on the Teft is by definition the Randomdec
signature.

The derivation to follow relates the Randomdec signature to the auto-
correlation function of a random process. Since the derivation uses only
the definitions of the autocorrelation function and the Randomdec signature
the result is entirely general.

The autocorrelation function of a random process X(t) may be defined

as follows as shown in the text Random Vibration by Crandall and Mark [10].

Rx(t1,t2) = E[X(ty) X(tz)] = i { X Xy p(x1,x2) dx, dx, (9)
1 2

where the abbreviations X] and X2 denote the wandom variables X(t])

and X(tz). p(X],Xz) is the joint probability density function describing
the distribution of x] and X2‘ This joint probability density function
may be expressed as the product of a conditional probability density func-

tion and a first order probability density function as shown below.

p(Xys%,) = (X [%) p(Xy) (10)



Substitution into Equation ( 9) leads to
Rx(t],tz) = [ J X] p(X1)X2 p(XZIX]) dX1dX2 (11)
Xy %,
These two integrals may be computed sequentially as follows:
Ry(tsty) = { X p(Xy) { Xy p(Xy|X ) dX,dX, (12)
1 2

If X] is defined to be the trigger level Xo then the integral over X2
yields exactly the expected value of X, given X(t]) = X1 which is the

definition of the Randomdec signature as given in Equation (12). There-

fore,
= f -
Ry(ty>t5) 3 Xy p(X;) E[lex(t1) = Xy JdX, (13)
Ry(tysty) = xf X, p(X;) Dx](t],tz) dX, (14)
1

An interpretation of Equation (13) is that the autocorrelation func-
tion of the random process X{t), computed between any two instants in
time t].and t2, is a weighted sum of all possible Randomdec signatures
of X(t). The weighting factor is the product of the trigger level X1 and

its probability of occurrance p(X1) at time t;-

Results for Stationary Gaussian Random Processes

A specific case for which the mathematics are tractable is a linear,
time-invariant system excited by a zero-mean, stationary, but not necessarily white,
Gaussian random process. For this case, the system response will also

be a zero-mean, stationary, Gaussian random process. The autocorrelation



function contains a complete characterization of such a process. The
following equations relating the probability distribution to the auto-

correlation function can be found in Crandall and Mark.

21r01 26 2

. 1 exp |[- (X; = m )2
p(x'l) = r—_‘—z [_____l_____l___J (15)
1

P(X{5X,)
(X-m )2 2p o (Xe-my) (Xomm,)
1 expl -1 1M P12t M /1 %7, +
N o 2 2
Znoloz 1 P2 2(1 P12 ) 9y g,0,
(Xy-my)?
A e
2

For stationary random processes the autocorrelation function depends
only on the time difference between t] and t2 and not on t] and t2 indi-

vidually. Defining this time difference as

T = tz - t]s (17)

setting X(t = 0) = Xy

- and noting that for the above equations

0,° = 022 = R,(0) (19)
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RX(T)
pyp(T) = (20)
Ry(0)
these expressions follow:
(X) = 1 exP[_.—__X_o_z_jl (2])
Pl T Tm (0] L2y (0)

p(xo.xT) =
2

] o ; X, 2Ry ()X X_ xT2 ]
R.2(1) 7 RAN LOT T TRziy  Ry(0) (22)
(T 1- Ry X X

sz(o) RXZ(O)

ZFRX(O) 1-

The conditional probability density function for X{t) given X0 also follows.

p(X_1X,) = p(XsX) / p(X) (23)
Ix) = 1 - exp -1
p{ T'O '_\/évRX(O)< RXZ(T) sz(r)
V) )
Ry2(0) R,2(0)
2
2 2 2 R
[xo _ZRX(T)XOXT , X ) X, (1- x“’)] (o)
Re(0)  RAO) Ry(0)  Ry(0) N R,2(0)

2
2R, (1) Ry " (1) 2
-1 2 LTy x X X
p(X_[X ) = P [x - ROy To * 0 (25)
T 0 2 20 2 1 R, (0 sz(o)
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2
R
where: O 2 . Rx(O) 1 - X o
a Ry2(0)

2
R,(T)
L exp ¢ -1 ‘:x-: - 2 X"} (26)

X_{X =
A Tl °) 2o 2 20 2 RX(O)
a a

From the definition of the Randomdec signature:

DXO(-:) = j):x,rp(lexU) dX_ (27)
T
Therefore:
2
Ry(T)
-1 X
Dy ('r) fx exp ( [xf x] ax (28)

T1] 2 2 T 0 T

2mota 20, RX(O)

But this integral is simply the expected value of a simple Gaussian proba-

bility distribution. The result may be obtained by inspection.

RX(T) _
X {29)
0)

Dy (1) =
xo t RX(

The Randomdec signature for a zero-mean, stationary, Gaussian random pro-

cess is simply the product of the correlation function and the trigger level.

_ 'Rx(T)
Dyé"[) = pX(T)Xo = ﬁ;(-a)— XO (30)

For this special case the Randomdec signature is proportional to the auto-

correlation function.
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If X(t) is the output of a linear time invariant system excited by -a
zero-mean, stationary, Gaussian random process, then X(t) is also a zero-
mean, stationary Gaussian random process. For such systems it is commonly
bejieved that the Randomdec signature represents the transient decay of

that system, to the initial conditions specified by

X(0) = X,
L (31)

Since it has been shown that the Randomdec signature must be proportional

to the autocorrelation function, then it can only be the transient decay of
the system from the specified set of initial conditions under the restric-
tion that the product of the correlation coefficient and the trigger level
also represent the transient decay. This is only exactly true when the

input to the system is white noise. However, for sharply tuned systems,

such as a lightly damped single degree of freedom oscillator, a band Tlimited
spectrum often yields results that are to sufficient accuracy equivalent
to the response to white noise. This applies as well to bandpass filtered
random processes. However, the filter's characteristics are then part of

the linear system being evaluated.

The Variance of the Randomdec Signature

In the previous sections the theoretical formulation of the Randomdec
signature has been presented. As a practical matter, such a signature must
be estimated from a limited number of finite Tength observations of an actual

random process. The practical limitation on record length and number of
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records will introduce variance into the estimated signature. In this sec-
tion an estimate of the variance of the Randomdec signature is obtained for
the case that the time history X(t) is a zero mean, Gaussian, and station-
ary random process,

For a stationary random process, the theoretical Randomdec signature is
a function of the delay T and the trigger level X(0) = Xgs S stated in
Equation (32).

on(r) = E[X(D|x(0) = X ] (32)

For a finite number of samples Xn(r) of the random process, an estimate

of Dx (1) may be obtained by
0

[ i)

N
, (D = %:‘: (xo(0) [, (0) = X,) (33)

If each time history is sampled at m+1 discrete delay intervals, then the
delay t may be replaced by m, the number of discrete lags. This yields a

discrete formulation for the estimate of Dx {1).
0

. N
o, (M) = g z](xn(m)txn(o) =X ) (34)
(1] n=

The expected value of the estimate may be found as follows.

XO)J (35)
1

N
ﬁ-nE1 E[Xn(m)lxn(o)_ o (36)

1
"

5, 1 = LeC3 (x_(m) |x (0)
Xo N n=1 n n

i}
>
| . )
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~ N
E[on(m)] ) %'nz] / Xn,m p(xn,mlxo) dxn,m (37)
R, (m)
T ORI Y o

The last two equations follow directly from the analysis given in the
previous section.

Therefore, it is concluded that

A Ry (m)

Since this is the discrete equivalent to the continuous formulation of
Equation (30), the estimate of the Randomdec signature is unbiased.
To obtain the variance of the estimate requires first the estimate of

the mean square of the Randomdec signature.

A N )
E[onz(m)] , ;%_ E[(nET X (m)]x (0) = xo)(£§1 X, (m) X (0) = X )] (40)

1

2

N
7 D D ELOG (X (0) = X)Xy (m)X,(0) = X)T - (41)

1 2=

n
ne-=

The expected value inside of the summation may also be expressed in

probabilistic terms as follows.
ELX (m) X (0) = X }(X (m)| X (0) = X )T =

X, m [ %) dx A o (42)
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These results then imply that

2 2 2 2
N Ry~ (m) Ry {m)X Ry~ {m)
ED, 2 (M1 = —5{ N R (0) {1 - Fo )b N Eo i (1) K
%o ﬁ?' X (: Ry (0) sz(o Ry (0)

The variance of the estimate is defined below in terms of the Randomdec

signature.

var [0,2 (m]1 = ELDyZ (m] - EDD, (m)1? (44)
0 0 0

Substitution of the previous results leads to

- : Ry (m) RZ(M)
Var‘[Dx (m)] = F N Rx(o)(hR—?—(——)) + N(N-1) —Sy— X0
x (0

0 Ry (o)
3 _T—sz(m) x2 &[N “T“"sz(m)xoz 1 (45)
Rx (o) 0 Rx {o) N2
2
1 Ry (m)
= +R 1 -
N x(")( sz(o) (46)

D, % (m)
_lgo) (1- 20
N Px 2 (47)
0

For a zero mean, Gaussian, and stationary random process, the variance
of the Randomdec signature decreases with N, the number of averages used

in computing the estimate. As expected, for zero lag (m=0), the variance
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is zero. This is because the signature is forced to be equal to the
trigger level. For very large lag, the variance increases to 1/N times
the mean square of X(t), assuming Ry(7) = 0 as t>« . It is important to
note that the variance is independent of trigger level. This is true be-
cause the variance was calculated assuming that there was no noise in the
measurement. If substantial noise were present, then the choice of too Tow
a trigger level would result in false triggers which would grossly increase
the variance of the estimate. The result of Equation (47) is valid for
measurements with good signal to noise ratios and trigger levels substan-
tially greater than the noise level.

This estimate of the variance was obtained with the assumption that
individual Randomdec sample time histories were uncorrelated to one another.
In practice, this is not generally the case. Sample time histories are
typically acquired each time the random process crosses the specified trigger
level. For reasonable trigger levels (such as on the order of the rms level
of the random process) data acquisition will be initiated many times within the
time frame of the decay length of RX(T). Thus each Randomdec sample may overlap
many others, and the assumption of uncorrelated samples will not be valid. For a
finite number of samples, correlation between samples will in general increase the
variance of the estimate. Therefore, there is probably not much gained
by triggering a new sample before data acquisition of the most recent one
has been terminated. Users of Randomdec indicate that hundreds of samples
of the highly overlapping type are required for convergence. It is suggested
that convergence could be obtained with many fewer samples if overlapping

were not allowed. This would not likely reduce the total data length re-
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quired, but would cut down on the number of necessary computations. Cole
[3 ] conducted Monte Carlo simulations and reports values of the variance
for uncorrelated samples from the output of a single degree of freedom
oscillator excited by band 1imited white noise. His values agree with the

predictions of Equation (46).
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An Application to an Offshore Structure

In March of 1980 authors Vandiver and Cook made acceleration response
records on a single cylinder petroieum production platform depicted in
Figure 1. This structure stands in 90 feet of water, is 4 feet in diameter
at the waterline and extends to 76 feet above the water at the helicopter
deck. It is very active dynamically with a lowest natural period of 3.28
seconds. Horizontal accelerations were recorded at several locations on
the structure.

Randomdec and other more conventional analysis procedures have been
applied to this data. Some of these results are presented here.

Figure 2 is an autocorrelation function computed from an acceleration
time history of a location near the top of the structure. The maximum lag
is 80 seconds and the total record length was 80 minutes, yielding a ratio
of total record length to maximum lag of 60, a measure of the variance.

The magnitude of this autocorrelation function has been normalized to force
it to the same scale as the Randomdec signatures to be presented later. The
recording was low pass filtered at 15 Hz to remove generator noise. No

other filtering was employed. The data was very noise free and was clearly
dominated by the response of the lowest bending natural mode of the structure.
The autocorrelation function looks exactly as one would expect from a single
degree of freedom oscillator excited by white noise.

A simple waveform averaging program was written for use on a GenRad
Time Series Analysis system which is based on a Digital Equipment Corporation
PDP 11/34 minicomputer.

The randomdec signatures were obtained by the following sampling pro-

cedure. The programmer specified the trigger level for the sample and
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selected positive or negative slope. After each trigger a sample 80 seconds
long was acquired. The sample was stored and when the trigger conditions
were next satisfied, a new sample was begun. In this way two sequential
samples could be considered to be essentially statistically independent, as
can be tested by checking the value of the autocorrelation function at lags
of 80 seconds and greater.

With this triggering procedure a maximum of 60 samples could be obtained
from the total record for any specified trigger level and either + or -
slope. Two sampling runs were made on the data. The trigger level was the
same for each run, but the slope was plus for one and minus for the other.
In the first case 50 samples were obtained in the second 43 samples were
the result. The trigger level was set at approximately the r.m.s. level of
the record.

Figure 3 shows the result of the ensemble average of 40 samples, 20
each with positive and negative slope. The result is clearly a long way
from convergence to the shape of the autocorrelation function. Figure 4
shows the result of 86 averages, 43 of positive and 43 of negative slope.
The result is considerably improved over the previous one, which had only 40
averages, although still a crude approximation to the shape of the auto-
correlation function. Without requiring additional data, the only way to
improve this result would be to obtain many highly correlated samples, for
example, by triggering a new sample every time the trigger level is crossed
with either positive or negative slope. This is in fact advocated in the
Randomdec Titerature. Such techniques would be difficult to implement in
our present software, and were not attempted.

Comparisons of the computed modal damping ratios using the autocorrelation

data in Figure 2 and the Randomdec signature from Figure 4 are of interest.
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Logarithmic decrement calculations over 20 cycles from each figure yield

the following estimates for the modal damping ratio.

g = 010 Autocorre1a§ion
g] = ,016 Randomdec
51 = .014 + .0027 ~ MEM
The MEM estimate refers to a technique. - described in Reference

[11], which uses the maximum entropy method (MEM) of spectral analysis to
obtain an estimate of the damping ratio. That method also provides an
estimate of the 95% confidence bounds on the estimated damping as shown
above. Of the three techniques the authors place the most confidence in

the MEM results.

CONCLUSIONS

The relationship between the autocorrelation of a random process and
the most popular form of the Randomdec signature has been established. For
a Gaussian random process, the Randomdec signature reduces to the product
of the correlation function and the trigger level. For this case the
variance of the estimated Randomdec signature is also found.

Because of the numerical simplicity of the Randomdec method, it provides
a potentially useful way of obtaining the correlation function, In
doing so, the shape of the autocorrelation function is obtained, at the
sacrifice of the knowledge of the mean square value of the process. This

is adequate for many purposes.
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Single Degree of Freedom Parameters:

X, X, X
M, K, R
F{t)

£

a,b

h{t-1)

General Symbols

X(t)
X0

x'I: Xz

E[ ]

Ry (1)

Ry (0)

py (1)
Ryp(ty2t2)
Dy, (¥)

oy (1)
p(x;)

Displacement, velocity and acceleration
Mass, spring and damper constants

Force excitation

Damping ratio

Undamped natural frequency

Damped natural frequency

Initial displacement and velocity

Impulse response function

Time history of X
Initial value of X (t=0)

Random variables corresponding to possible values of X(t)
at two different times

Expected value operator

Autocorrelation function for X(t) at arbitrary lag T
Autocorrelation at T =10

Correlation function

Cross correlation between X(tl) and F(tz)

Randomdec signature
Estimated Randomdec signature

Probability density function (pdf) for the random variable
X
1
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Joint pdf for X, F2

Conditioned pdf for F, given X]

Mean values of two different Gaussian random variables
Mean squares of two Gaussian random variables

nth sample time history of X(t)

total number of sample time histories.



Figure 1 Single Caisson Production Platform

Figure 2 Autocorrelation Function Computed From Acceleration Response

Figure 3 Randomdec Signature with 40 Averages

Figure 4 Randomdec Signature with 86 Averages



